-symmetric cubic anharmonic oscillator as a physical model

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2005 J. Phys. A: Math. Gen. 388185
(http://iopscience.iop.org/0305-4470/38/37/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.94
The article was downloaded on 03/06/2010 at 03:57

Please note that terms and conditions apply.

Corrigendum

$\mathcal{P} T$-symmetric cubic anharmonic oscillator as a physical model

Mostafazadeh A 2004 J. Phys. A: Math. Gen. 38 6557-69
There is a factor of 2 error in equation (61) of this paper. Correcting this error leads to minor changes in equations (62) and (63). The corrected equations are

$$
\begin{align*}
& M\left(x_{c}\right):=\frac{m}{1+6 \mu^{-4} \epsilon^{2} x_{c}^{2}}=m\left(1-6 \mu^{-4} \epsilon^{2} x_{c}^{2}\right)+\mathcal{O}\left(\epsilon^{4}\right) \tag{61}\\
& \frac{p_{c}^{2}}{2 m}+\left(\frac{\mu^{2}}{2}+\frac{6 \epsilon^{2} E}{\mu^{4}}\right) x_{c}^{2}-\frac{3 \epsilon^{2}}{2 \mu^{2}} x_{c}^{4}=E \tag{62}\\
& E \ll E_{\star}:=\frac{1}{12} \mu^{6} \epsilon^{-2} \tag{63}
\end{align*}
$$

Therefore, the value of E_{\star} given in the caption of figure 1 should be $25 / 3 \approx 8.3$. Equation (62) shows that the distortion of the elliptic shape of the phase space orbits of the unperturbed (harmonic oscillator) potential occurs at order ϵ^{2} of the perturbation theory. This distortion is more pronounced for larger values of E as shown in figure 1. Note that this figure uses equation (59) which is free from the above-mentioned numerical error.

I wish to thank Christiane Quesne for informing me of the above error.
doi:10.1088/0305-4470/38/37/C01

